
L-WMxD: Lexical based Webmail XSS Discoverer
Zhushou Tang∗†, Haojin Zhu∗, Zhenfu Cao∗, Shuai Zhao∗†

∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
†Key Laboratory of Information Network Security, Ministry of Public Security, People’s Republic of China

pll@sjtu.edu.cn, zhu-hj@cs.sjtu.edu.cn, zfcao@cs.sjtu.edu.cn, zhaosspirit@sjtu.edu.cn

Abstract—XSS (Cross-Site Scripting) is a major security threat
for web applications. Due to lack of source code of web applica-
tion, fuzz technique has become a popular approach to discover
XSS in web application except Webmail.

This paper proposes a Webmail XSS fuzzer called L-WMxD
(Lexical based Webmail XSS Discoverer). L-WMxD , which works
on a lexical based mutation engine, is an active defense system to
discover XSS before the Webmail application is online for service.
The engine is initialized by normal JavaScript code called seed.
Then, rules are applied to the sensitive strings in the seed which
are picked out through a lexical parser. After that, the mutation
engine issues multiple test cases. Newly-generated test cases are
used for XSS test. Two prototype tools are realized by us to
send the newly-generated test cases to various Webmail servers
to discover XSS vulnerability. Experimental results of L-WMxD
are quite encouraging. We have run L-WMxD over 26 real-world
Webmail applications and found vulnerabilities in 21 Webmail
services, including some of the most widely used Yahoo!Mail,
Mirapoint Webmail and ORACLE’ Collaboration Suite Mail.

Keywords-Webmail, XSS, fuzzer, L-WMxD

I. INTRODUCTION

XSS is one of the most popular vulnerabilities in web
application. There are three types of known XSS flaws [1]–
[3]: 1)Stored XSS, 2)Reflected XSS, 3)DOM based XSS, a-
mong which Stored XSS vulnerability always allows the most
powerful attacks. During this type of attack, attack vectors are
submitted to web server and stored on the server (in a database,
file system or other locations). When other users request this
data and attack vectors are displayed on their browser without
sufficient checks, an attack may happen. Hackers use XSS
vulnerability to gain access to victims’ browser for identi-
fication, e-mail or password. Because the malicious script
running under the context of current user, firewall, encryption
method or IDS (intrusion detection system) are ineffective in
preventing this type of attack. As described in OWASP TOP10
security risks (both 2007 [4] and 2010 [5]), XSS is one of the
most critical risks.

In order to find vulnerability of web application, two
approaches are mainly used: “White Box” and “Black Box”.

The “White Box” approach needs source code of the web
application. This approach can be realized manually or by
using automatic code analysis tools, such as Fortify SCA [6],
Pixy [7]. Since manual code review is time-consuming, error-
prone, costly and hard to evaluate, static analysis tools are
more preferred. Most static analysis tools use the source code
of web application as input, and then traversal all the possible
paths through the manipulation of the XSS attack vectors and
finally the detection results are presented.

The “Black Box” test is now commonly used by many
commercial systems, including AppScan [8], Acunetix [9] and
Nessus [10]. These tools inject attack vectors to the web
application’s HTML form elements or URL parameters and
get feedback immediately. If input validation module of a
web application can’t sufficiently filter attack vectors, these
tools can discover vulnerability of the test target. This kind of
test procedure is fit for testing Reflected XSS, but not Stored
XSS. For most Stored XSS, the malicious input is stored in the
database and later included in another but not the immediately
response. This is an obstacle for current existing tools to make
the analysis procedure automatically, so, they principally focus
on URL-based XSS like Reflected XSS detection. Furthermore,
“Black Box” test can’t take the advantage of the logic of
the program, it is not efficient, and can not guarantee the
coverage. Fonseca’s [11] study shows that the percentage
of false positives of current widely used tools is very high,
ranging from 20% to 77%. However, the advantage of “Black
Box” test is that it is not sensitive to the implementation
programming language of the web application, which makes
it ideal for wide deployment.

Both of the “White Box” and “Black Box” methods need to
generate test cases to verify the ability of the XSS discoverer.
Model checking and symbolic execution are the two methods
now used to generate test cases, but these methodologies are
also based on source code of web application.

“White Box” test is hard to be performed, because Webmail
service venders are reluctant to release their Webmail source
code. Therefore, “Black Box” test approach is finally adopted
by us to discover Webmail’s vulnerability. Through compre-
hensive consideration of different Webmail’s filter mechanism-
s, we make corresponding rules for mutation to generate test
cases. The results show that our method is quite effective in
finding Webmail XSS Vulnerability.

This paper makes the following contribution:
• Firstly introduce a semi-automatic XSS detector to Web-

mail. Until now, there is no publicly released Webmail
XSS detector. Due to the attribute of Webmail, most of
the Webmail XSS discoverer job is now done by labor.
We firstly introduce a semi-automatic fuzz technique to
Webmail XSS discoverer and achieve a good success rate.

• Deliberately selected seeds and rules. Seeds we used
can widely cover most possible usage of JavaScript in
HTML. Based on well known documents and experiment,
rules are selected deliberately and made by sufficient
observation of various kinds of Webmail applications.

The First International Workshop on Security in Computers, Networking and Communications

978-1-4577-0248-8/11/$26.00 ©2011 IEEE 976



Fig. 1. Relationship between Fx and Rx

They are set on the assumption of the possible defects
of a Webmail filter module, which should be responsible
for finding scripting commands or meta-characters in
untrusted inputs and filtering any such contents before
these inputs are processed by the web applications and
returned to users’ browser.

• A lexical-based test case generating engine. Unlike other
XSS fuzz methods which use pre-defined test cases to
discover the vulnerability of Web application, we make
different rules corresponding to different filter’s strategies
of Webmail server. Our Rules work on a lexical-based
parser to translate the sensitive areas of the input seeds
into different test cases.

The rest of the paper is organized as follows. Section II
describes the target we want to defeat and the seeds, rules we
used for generating XSS attack vectors. In section III, proto-
type tools for testing are described. We present experimental
results in section IV. In this section, a brief analysis will be
followed after the list of vulnerabilities our tools find. Section
V presents related work on discovering and detecting XSS
attacks. Finally, in section VI, we present our conclusion and
future work.

II. FUNDAMENTAL DESIGN PRINCIPLES

In this section, first we give a brief overview of seeds and
discussion about rules which are used for generating test cases.
Then we will discuss the lexical parser used, through which
rules can be employed. The relationship of the Webmail’s filter
and rules is presented by Figure 1. On the server side, the filter
module is divided into Front-End (Fx) and Back-End. The
Front-End is designed to transform original user input data to
a unified expression, then the Back-End of filter module can
apply XSS attacks detection using fix signature. Therefore, if
our mutated data can defeat the Front-End of the filter module,
it is likely to bypass the Back-End. We design rules (Rx),
which are applied to the seeds to generate new test cases
to bypass the Front-End of a Webmail’s filter module. The
filter’s strategies for transforming the original input data and
the rules we used will be discussed in detail in the following
subsections.

A. Seeds selected

After investigating more than 100 XSS samples, which are
collected from previous XSS in the wild like Yahoo!Mail and
Hotmail XSS, we select a serial of seeds deliberately. Each
seed is a standard type of XSS attack vector, such as pure
JavaScript, HTML tags, HTML attributes, events, Flash and

Seed Description
S1 <script>alert(‘xss’)</script>
S2 <img src=“javascript:alert(‘xss’);”>
S3 <img style=“xss:expression(alert(‘xss’))”>
S4 <body onload=“alert(‘xss’)”>
... ...

TABLE I
Seeds used by L-WMxD

Filter Description
F11 The mail server does nothing on the mail.
F12 The mail server employs a weak filter, it

transforms HEX value with semicolons to
ASCII string and checks sensitive string in
it.

F13 The mail server employs a weak filter, it
transforms DEC value without semicolons to
ASCII string and checks sensitive string in it.

TABLE II
Different strategies of transforming HEX/DEC to ASCII taken by a

Webmail server

ActiveX. Sx represents the seed we used and some of the
seeds are listed in Table I.

B. Rules for mutation

Considering most Webmail systems have their own mech-
anisms for sensitive string identification, like “JavaScript”,
“expression”. We mainly apply rules to sensitive strings in
order to make mutation escape capturing by the Webmail filter.
Because sensitive strings always have some common features,
we collect them in advance and build a database to hold them.
The rules discussed in the following subsection can be applied
to the sensitive strings, then we check whether they can bypass
the Webmail filter mechanism.

Currently, there are six rules mainly used for making
mutation, we present them from R1 to R6.

1) R1x, ASCII → HEX/DEC transform: This rule is used
to transform ASCII encoded string to HEX/DEC encoded
string. The HEX/DEC encoding formats are HEX value with
semicolons and DEC value without semicolons. Table II
lists the different strategies the filter may take when dealing
with HEX/DEC encoded string. The strategies are made by
assumption. Table III is the corresponding rules we take.

The relation of F1x, R1x, and the result is:

XSS = (F11

∧
R11)

∨
(F11

∧
R12)

∨
(F11

∧
R13)

∨
(F12

∧
R12)

∨
(F12

∧
R13)

∨
(F13

∧
R11)

∨
(F13

∧
R13)

If server can transform mixed type of encoding value from
HEX and DEC to ASCII, our R1x rule will not defeat the filter
mechanism.

Rule Description
R11 HEX value with semicolons encoding. Using

this rule, we can bypass F11 and F13.
R12 DEC value without semicolons encoding.

Using this rule, we can bypass F11 and F12.
R13 Mixed encoding with HEX and DEC values.

Using this rule, we can bypass F11, F12 and
F13.

TABLE III
Rules we make to defeat filter strategies of F1x

977



Filter Description
F21 The mail server does not filter annotation for

the following procedure.
F22 The mail server employs a week filter. The

week filter takes the longest match principle,
so that it wrongly deals with annotation
embedded in user input. (The true algorithm
IE use for identifying annotation is showed
as Figure 2.).

TABLE IV
Different strategies of processing annotation a Webmail server takes

Rule Description
R21 Normal annotation like “/*xss*/”. This rule

can help us to bypass F21.
R22 Complicated annotation like “ex-

pre/*xss*/ssi/*xss*/on”. After a well
written filter, string “expression” should be
left. If the filter mechanism is not designed
well, the frond-end part will emit string
“expreon”. Certainly, this will bypass later
check. We also provide other annotation for
insertion, like “/*/*/”, “/*/*xss*/”.

TABLE V
Rules we make to defeat filter strategies of F2x

2) R2x, Annotation insertion: If the mail sever simply filters
sensitive words like “expression” using a regular expression,
the inserted annotation “/*xss*/” may help the injected script
to bypass the filter. This type of grammar can work well under
IE (Internet Explorer). Different strategies the filter takes when
dealing with annotation are given in Table IV, and Table V
gives the corresponding rules.

Relation between F2x, R2x, and the result is:

XSS = (F21

∧
R21)

∨
(F21

∧
R22)

∨
(F22

∧
R22)

3) R3, Enter insertion: Both HTML labels and JavaScript
statements can be fragmented to multi-lines, for example, the
maximal multi-line transaction of

‘ ‘<s c r i p t>a l e r t ( ‘ xss ’ )< / s c r i p t>”

is:

‘ ‘<s c r i p t
>
a l e r t
(
‘ xss ’
)
< / s c r i p t
>”

Fig. 2. IE’s lexical parser (Makes by observtion but undocumented)

The transformed string can work well under Internet Explor-
er. If the mail server’s filter can not deal with the inserted new
line in seed, a new ENTER may help us to escape capturing
by the filter. The places where a new line can be inserted have
some features in common. For example: ENTER can not be
inserted into the place between the starting of tags or attributes
(characterized by ‘<’ symbol) and the first letter, but can exist
between the last letter and the closure of tags or attributes
(characterized by ‘>’ symbol). There should be no ENTER
in a string, which is presented by closure of double quotation
marks. To identify a string, we need the assistance of a lexical
parser which will be discussed later.

4) R4, lower→upper case transform: HTML language
does not require lower or upper case strictly, but JavaScrip-
t language is case sensitive. Therefore, the mixed HTML,
JavaScript and their different requirement for case encoding
will make Webmail filter puzzled. For example, “expression”
and “EXPRESSION” will all be accepted by IE, but if Web-
mail’s filter do not sensitive to this change, our transformed
attack vectors will successfully bypass the Webmail’s filter.
So R4 rule mainly makes case change on sensitive string of
HTML language.

5) R5, ANSI encoding→Other encoding transform: There
are many types of encoding, like ANSI, UNICODE, UNICODE
of big endian and so on. IE accepts all these kinds of encoding
formats. But if the server filter can not deal with these
transformation, our attack vectors will reach victim’s browser
successfully.

6) R6, DBC case→SBC case transform: Lower version of
IE is likely to accept SBC case character, so we transform
DBC case character to SBC case. If Webmail server does not
deal with SBC case character, our attack vectors will execute
on user’s browser eventually. This means, even sensitive string
“JavaScript” is filtered, “JaυaScript” may not be captured.

7) Mix multiple rules: Multiple rules can be applied on the
same seed, newly generated test cases Mi can be used for
rotate mutation. Following is the mutation algorithm:

Mi+1 = Ri(Mi)(i = 1 ∼ 6,R ∈ {R1, R2, R3, R4, R5, R6},
M0 = Sj)

To avoid the cases that the Front-End of a Webmail
filter does not apply decoding procedure but simply drop-
ping unknown encoded string, the algorithm we design
do abundant job. For example, if we apply R11 rule
to the sensitive string “expression” to get string M11:
“&#x65;xpression”, and the Webmail filter drops the trans-
formed string for the unrecognized string format, then the next
string “&#x65;&#120pression” based on M11 and R12 is
also dropped by the server. So, we adjust the sequence of test
cases generation to make the test cases take effect. The test
case generation procedure can be presented as following:

1 S e e d G e n e r a t i o n ( seed ) {
2 c u r R u l e = 1 ;
3 i f ( c u r R u l e == 1)
4 {
5 T e s t C a s e = Rule1 ( seed ) ;

978



Fig. 3. Lexical parser for identifying sensitive string (For the sake of brevity,
the figure does not depict other edges.)

6 SendTes tCaseToWebmai lServer ( T e s t C a s e ) ;
7 c u r R u l e ++;
8 S e e d G e n e r a t i o n ( T e s t C a s e ) ;
9 }

10 i f ( c u r R u l e == 2)
11 {
12 T e s t C a s e = Rule2 ( seed ) ;
13 SendTes tCaseToWebmai lServer ( T e s t C a s e ) ;
14 c u r R u l e ++;
15 S e e d G e n e r a t i o n ( T e s t C a s e ) ;
16 }
17 . . .
18 }

C. lexical parser

As described above, rules can not be applied to certain part
of seed, so a lexical parser is needed for identifying sensitive
strings or tags of HTML or JavaScript language. The parser
we used is described in Figure 3.

At end point V T1, a string is identified, almost all rules can
be applied to the string; A tag of HTML is found at end point
V T2, R3 rule can be applied between the last character of
a string and the “>” symbol. Considering certain mail areas
do not accept multi-lines input, test cases generated by R3

normally should not be applied to these areas, like “Subject”
area.

III. IMPLEMENTATION

We have implemented two prototype tools to send new test
cases generated by L-WMxD to Webmail server.

1. An automatic mail sender built on SMTP protocol is
developed to make a comprehensive test. This tool has the
following characters to support the rules we discussed above:

• Test areas include not only mail body, subject, but also
sender name, receiver name, CC name, etc.

• Multiple test case encoding types for selection.
• For most of Webmail server can not tackle multi-line text

of subject, sender name, receiver name or CC name areas,
these kinds of messages will be rejected at once when
received. Therefore, it is programmed as optional for us
to decide whether to apply R3 to them or not.

• Most mail server set anti-spam mechanism and this will
interrupt the procedure of testing, we choose gmail as our
relay server. Since gmail server needs SSL connection, we
add SSL support for this tool.

2. A Paros [12]-based tool is developed to make an intercep-
tion. Using this tool, we can modify and resend the captured
message. Paros is powerful to deal with HTTPS protocol.
Using a fake certification, Paros can get plain text of the
encrypted data over HTTPS. This tool can also help us to
do interception when testing Microblog or web-based online
chat service.

IV. EVALUATION

Some special mail systems are hard to register (identifica-
tion card number needed, etc). In order to test these Webmail
systems, we use hacking tool HScan to guess week password.
Through this method, we gain password of certain Webmail
user account, then we can do the subsequent tests on it.

Another trick is adopted to deal with the case that weak
password is not available. We call this trick “blind injection”.
For example, we transform the functions of test cases from
invoking a message box to downloading an empty text file
residing on our server. The test cases are sent to a Webmail
server and then the Webmail user interacts with the new
coming message, after that, a request may happen on our
server. If there is a request for the empty text file, we think
XSS attack may affect this kind of Webmail application.

L-WMxD has been applied to 26 real-world Webmail ser-
vices using our tools and the discovered XSS is verified by
the latest web browser: Internet Explorer 8.0.7600.16385. The
XSS we found and L-WMxD’s performance will be discussed
in the following.

A. Found vulnerabilities
Table VI shows XSS we have discovered by testing. As for

Webmail, sending message and receiving the same message
are asynchronous. This means that a sequence of interactions
are needed when viewing a new coming message, and more
labor work is needed when making the audit phase auto-
matical. Till now, we simply check mails one by one after
sending all test cases, and manually confirm whether there is
a vulnerability (a message box or a desired request appeared
through an unmodified Paros). If there is, we classify it as
find-xss. As for “blind injection” test method, we are not sure
if this request is made by a Webmail user or XSS, this type of
request is classified as unknown. Others, test procedures which
are terminated in advanced (because there are too much test
cases generated) are grouped as none-xss. Test results show
that we have found XSS vulnerability in 21 Webmail service
and 1 Webmail service is likely to have defects.

B. Case Study
Although we have informed all the venders, most of the

XSS we discovered keeps the state of un-patched. Till now,
we are providing supports to the Webmail venders to fix their
problems, ChinaUnionPay for example. Therefore, we will
only give a brief description and the test cases will not be
presented.

1) Test result using R1x rule: Through R13 rule, we find
XSS vulnerability in Mirapoint Webmail 3.10.6, Mirapoint
Webmail 3.10.8, mail.126.com, mail.163.com, etc.

979



Webmail find-XSS none-XSS unknown
mail.eastday.com

√
- -

mail.hexun.com
√

- -
mail.186sh.com

√
- -

mail.133sh.com
√

- -
mail.139.com

√
- -

mail.wo.com.cn
√

- -
mail.163.com.cn

√
- -

mail.263.com
√

- -
mail.yeah.net

√
- -

mail.sohu.com
√

- -
mail.vip.sohu.com.cn -

√
-

mail.sina.com.cn
√

- -
mail.vip.sina.com

√
- -

mail.21cn.com
√

- -
mail.tom.com

√
- -

mail.vip.tom.com
√

- -
mail.yahoo.com

√
- -

gmail.com -
√

-
KOAL secure mail

√
- -

mail.ru
√

- -
freemail.ru -

√
-

ORACLE’ Collaboration Suite Mail
√

- -
freemail.eyou.com

√
- -

Mirapoint 3.10.x
√

- -
mail.qq.com -

√
-

mail.aol.com - -
√

Total 21 4 1

TABLE VI
Webmail vulnerability that have been discovered by L-WMxD

2) Test result using R2x rule: By using R21 on seed
generation we discover XSS vulnerability in mail.186sh.com,
mail.133sh.com, mail.139.com, etc.

3) Test result using R3 rule: Test result shows that R3 is
very effective in discovering XSS vulnerability. More than
10 Webmail services are defective in filtering such kind of
attacks, such as mail.wo.com.cn, mail.163.com. Some of them
are patched without the public announcement on March 2010.

4) Test result using R4 rule: R4 rule has been used to
discover vulnerability in mail.21cn.com.

5) Test result using R5 rule: Using rule R5, we discover
XSS in mail.ru and “KOAL secure mail”, it’s likely that they
can not deal with message encoded with UNICODE.

6) Test result using R6 rule: Since R6 need to be tested
under elder version of IE, we don’t do much test on it.

7) Others: Taking advantage of the tools we devel-
oped based on L-WMxD, we can perform a comprehen-
sive test. Through the test procedure, we discover XSS in
mail.sohu.com, freemail.eyou.com and so on. For example,
when attack cases are applied to “title” area of a message, we
discover vulnerability of mail.sohu.com even with pure seed
(seed is send directly without transformation). We believe such
area of a message is ignored by filter mechanism for years.

Distribution of XSS we have found when using correspond-
ing rule can be presented in Figure 4.

V. RELATED WORK

Nowadays, most XSS detection tools rely on source code of
web applications. Techniques employed by such tools include
control-flow, data-flow or formal method. Considering the

Fig. 4. There are overlaps of XSS in a same Webmail server (different rules
take effect on the same Webmail server).

stage that the XSS detection method is employed, we classify
current work into “Active Defense” and “Passive Defense”.
“Active Defense” means discovering flaws of software in ad-
vance before it is publicly released. “Passive Defense” means
that discovering mechanism is applied to online software to
detect XSS attack in real time. Michelle Ruse [13] has done
a good job of collecting latest research about XSS attack
detection.

A. Active Defense

MUTEC [3] applies mutation on PHP source code of a
product to verify whether a test case can bypass a filter. Pixy
[7] uses flow-sensitive, interprocedural and context-sensitive
data flow analysis to discover vulnerable points in a PHP
program. In addition, alias and literal analysis are employed
to improve the correctness and precision of the results. QED
[14] is a goal-directed model-checking system (based on
Java PathFinder Model Checking system) that automatically
generates attacks in standard Java web applications. It uses
programmable technique to automatically generate attacks for
large web-based applications.

B. Passive Defense

The “Passive Defense” approach needs intervention with
original web applications, which will have an impact on
robustness and stability of the application potentially. Further,
it also specifies the language in which an application is written.

“Passive Defense” mainly resides on client side [15]–[18]
and most work focuses on “Cross Site Request Forgery
(CSRF). Using technique of dynamic data tainting and static
analysis, this kind of defending technique can avoid XSS
attacks effectively. Since it is hard to deploy such technique
to every browser, it’s better to find vulnerability in advance.

Most current methods have difficulty in verifying the true
and false of the XSS found (because simulating the real world
browser is very difficult), which leads to high false positives
[11]. XSSDS [1], XSS-GUARD [19] use Firefox components
like rbNarcissus [20] to precisely identify scripts in a web
page. Wassermann’s [21] work is based on tainted information
flow with string analysis. He also checks whether un-trusted

980



parts of the document can invoke the JavaScript interpreter
or not. Such a method is a good remedy for the shortcoming
of current identification problem. However, for IE, it’s not an
open source software and is hard to decide whether certain
JavaScript can run on it.

C. Test case generation

Test case generation is commonly considered as a criterion
for code coverage. Well generated test cases can test more
branches of a program. Dynamic execution is used for attack
vectors generation [22]–[25]. For example, Kieżun et al [23]
presents a dynamic tool, Ardilla, to create SQL and XSS
attacks. This tool uses dynamic tainting, concolic execution for
attack-candidate generation and validation. Moreover, Kudzu
[25] introduces a string constraint solver for JavaScript to
perform symbolic execution in-depth.

VI. CONCLUSION AND FUTURE WORK

An effective test of XSS vulnerability helps to fix implemen-
tation early and decrease losses incurred for the end users.
Experimental test shows that XSS vulnerability extensively
exist in Webmail service and our L-WMxD is effective in
discovering it. We will continue the test procedure using tool
derived from Paros to discover XSS vulnerability in other web
applications like online chat system which is used by Google,
AOL, etc.

As noted above, it is hard to evaluate the coverage when
using “Black Box” testing. We also notice some attack vectors
from existing attack like hotmail XSS (patched):

<s t y l e>p{ h e i g h t : e x p r e s s i o n ( ( window . r r r ==914) ? xxx = 8 : (
e v a l ( code . t i t l e ) ==88) | | ( r r r =914) ) } , 8 0 , 1 8 0 ) ;}< /
s t y l e><p><img id = ‘ ‘ code ” wid th =1 h e i g h t =1 t i t l e
= ‘ ‘ e m a i l k e y = ‘ email ID23456 ’ ; v a r cc= a l e r t ( ‘ x ’ ) ;
e v a l ( cc ) ; ”>

The above attack vector can bypass hotmail filter. When it
reaches victim’s browser, IE also accepts such encoding. This
is an obstacle for most of XSS discover methods, because
it’s difficult for them to generate such a complex test case.
In our opinion, the combination of symbolic execution on
server side (based on source code of Webmail to bypass filter
mechanism) and client side (based on HTML parser to reach
the JavaScript interpreter) can generate such kind of attack
vector automatically. We will apply symbolic execution to find
Webmail XSS vulnerability for future work.

ACKNOWLEGEMENT

This research is supported by National Natural Science
Foundation of China (Grant No. 61003218 and No. 61033014),
Doctoral Fund of Ministry of Education of China (Grant
No.20100073120065), Natural Science Foundation of Hohai
University under Grant NO. 2009427811, Science and Tech-
nology Commission of Shanghai, (Grant No.10511501503),
and Opening Project of Key Lab of Information Network
Security of Ministry of Public Security (The Third Research
Institute of Ministry of Public Security).

REFERENCES

[1] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: Server-Side Detec-
tion of Cross-Site Scripting Attacks,” in Computer Security Applications
Conference, 2008. ACSAC 2008. Annual. IEEE, 2008, pp. 335–344.

[2] A. Klein, “DOM based cross site scripting or XSS of the third kind,”
Web Application Security Consortium, Articles, vol. 4, 2005.

[3] H. Shahriar and M. Zulkernine, “Mutec: Mutation-based testing of cross
site scripting,” Software Engineering for Secure Systems, ICSE Workshop
on, vol. 0, pp. 47–53, 2009.

[4] A. Stock, J. Williams, and D. Wichers, “OWASP top 10,” OWASP
Foundation, July, 2007.

[5] J. Williams and D. Wichers, “OWASP top 10–2010,” OWASP Founda-
tion, April, 2010.

[6] B. Chess and J. West, “Secure programming with static analysis,” 2007.
[7] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool

for detecting web application vulnerabilities,” in Security and Privacy,
2006 IEEE Symposium on. IEEE, 2006, pp. 6–263.

[8] AppScan, “http://www-01.ibm.com/software/awdtools/appscan/.”
[9] Acunetix, “http://www.acunetix.com/.”

[10] Nessus, “http://www.nessus.org/.”
[11] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web

vulnerability scanning tools for SQL injection and XSS attacks,” in De-
pendable Computing, 2007. PRDC 2007. 13th Pacific Rim International
Symposium on. IEEE, 2008, pp. 365–372.

[12] Paros, “http://www.parosproxy.org/.”
[13] “MichelleRuse: Paper surverys.” [Online]. Available:

http://www.cs.iastate.edu/˜mruse/
[14] M. Martin and M. Lam, “Automatic generation of XSS and SQL

injection attacks with goal-directed model checking,” in Proceedings
of the 17th conference on Security symposium. USENIX Association,
2008, pp. 31–43.

[15] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: a client-side
solution for mitigating cross-site scripting attacks,” in Proceedings of
the 2006 ACM symposium on Applied computing. ACM, 2006, pp.
330–337.

[16] M. Johns and J. Winter, “RequestRodeo: client side protection against
session riding,” in Proceedings of the OWASP Europe 2006 Conference,
refereed papers track, Report CW448, pp. 5–17.

[17] A. Barth, C. Jackson, and J. Mitchell, “Robust defenses for cross-
site request forgery,” in Proceedings of the 15th ACM conference on
Computer and communications security. ACM, 2008, pp. 75–88.

[18] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Cross site scripting prevention with dynamic data tainting and static
analysis,” in Proceeding of the Network and Distributed System Security
Symposium (NDSS), vol. 42. Citeseer, 2007.

[19] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: precise dynamic
prevention of cross-site scripting attacks,” Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 23–43, 2008.

[20] rbnarcissus, “http://code.google.com/p/rbnarcissus/.”
[21] G. Wassermann and Z. Su, “Static detection of cross-site scripting

vulnerabilities,” in Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on. IEEE, 2009, pp. 171–180.

[22] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic creation of
SQL injection and cross-site scripting attacks,” in Software Engineering,
2009. ICSE 2009. IEEE 31st International Conference on. IEEE, 2009,
pp. 199–209.

[23] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst,
“Finding bugs in dynamic web applications,” in Proceedings of the 2008
international symposium on Software testing and analysis. ACM, 2008,
pp. 261–272.

[24] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su,
“Dynamic test input generation for web applications,” in Proceedings
of the 2008 international symposium on Software testing and analysis.
ACM, 2008, pp. 249–260.

[25] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for JavaScript,” in Security and
Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 513–528.

981


